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Exact solution for the resistance of random walks 
on a Cayley tree 

A Brooks Harris? 
School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 

Received 29 January 1987 

Abstract. We consider random walks consisting of successive steps between neighbouring 
sites on a Cayley tree of arbitrary coordination number z = U +  1. Each bond between 
neighbouring sites in assigned a conductance qg,, where q is the number of times the bond 
is traversed in the random walk. We present an exact evaluation ofthe resistive susceptibility 
from which we find the end-to-end resistance averaged over all z y  walks of length N is 
given by [RI ‘  “ )  - N for U > 1 and [RI‘”’ -; In N for U = 1, i.e. for a one-dimensional chain. 

1. Introduction 

Motivated by problems concerning fluid flow in low porosity media, Banavar et a1 
(1983) introduced a model whose analogue electrical network gives rise to some 
interesting statistical problems. In particular, we give here the exact solution on a 
Cayley tree of arbitrary coordination number z to the following problem. Consider 
the ensemble r ( N )  of z N  random walks, each of which consists of N successive steps 
between neighbouring sites on a Cayley tree (a section of which is shown for z = 3 in 
figure 1). Let R ( y )  be the end-to-end resistance of the walk y obtained if we associate 
with each step a unit conductance g o .  If a bond between neighbouring sites is traversed 

Figure 1. Section of a Cayley tree with coordination number U +  1 =3 .  For U =  1, the 
Cayley tree is a one-dimensional chain. 

t Permanent address: Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA. 
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q times in the random walk, then it is assigned a conductance qg , .  Some examples 
of random walks with their resistances are shown in figure 2 .  The object of this study 
will be the calculation of the 'resistive susceptibility', x( K ) ,  defined by 

x ( K ) = C  c R(Y)KN ( 1 )  
N vs,~-l"l 

where K is a fugacity, and the sum over N and r(N) is equivalent to summing over 
all walks. The notation y r r " '  indicates that the sum is over walks y in the ensemble 
r(N) of N-step walks. 

For fixed starting point, the distribution of endpoints of the ensemble of random 
walks is known (Barber and Ninham 1970) to be Gaussian for large N in all spatial 
dimensions d. The resistive susceptibility diverges at K = z-'  and arguments (Harris 
and Christou 1987) based on the Gaussian nature of random walk intersections or an 
analysis of the associated field theory from which x may be determined both show 
that, for d > 4, 

x - C ( Z - ' -  K ) - 2  K + 2 - I  ( 2 )  

[RI"'- CN (3)  

where C is an indefinite constant. This implies that 

where [RI"' denotes the average of R ( y )  over the ensemble of walks of length N. 
For d < 4  one has 

(4) x - C(z-'  - K)-'-d' 

and correspondingly 

[RI"'- CN' ( 5 )  

where (p is a crossover exponent. For d near 4 an expansion in E = 4- d gives (Harris 
and Cristou 1987) 

c p = l - '  4 E - G E .  1 * 

f 

i o )  

f 

i b l  i c 1  

Figure 2. Examples of random walks of N steps from an initial site i to a final sitef having 
end-to-end resistance R as indicated. ( a )  N =6,  R = 2  and the sum over (kl) in (12)  is 
over (i, a )  and (a,f) and the corresponding n k r ( y )  are 1 , l .  ( b )  N = 16, R = f  and the sum 
is over (1, a ) ,  (a ,  b ) ,  (b ,  c)  and ( c , f ) ,  and the corresponding n, , (y)  are 1,3,3,1. (c )  N = 9 ,  
R = 1 and the sum has a single term ( i , f )  with a corresponding n , , ( y )  of 1. 
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For d = 1 a hand-waving argument (Harris and Cristou 1987) suggested that cp = 0, 
which we will verify, in that we find for this case 

, y - C ( z - ' - K ) l n ( z - ' - K ) .  (7)  

For a Cayley tree with coordination number greater than two, we recover (2) with no 
logarithmic corrections, as expected. The numerical data (Banavar et al 1983) are 
consistent with these results. 

Briefly this paper is organised as follows. In 5 2 we present the calculation and in 
5 3 we discuss our results and summarise the conclusions to be drawn therefrom. 

2. Method of calculation 

In this section we describe the exact calculation for ,y which we have carried out for 
the Cayley tree. Unfortunately the method depends on the lattice not having parallel 
paths between two different sites. Accordingly, the method cannot be generalised to 
actual d-dimensional lattices with 1 < d < W. Nevertheless, the answers are useful in 
that they represent the exact solutions for d = 1 and d =CO. Briefly, the method we 
use is based upon evaluating a lattice Green function, and is therefore similar in spirit 
to that used by Montroll and Weiss (1965). However, we need to extend their method 
to count the number of times a bond is traversed, since this information enables us to 
obtain the resistance of a random walk. 

Consider the Green function G, which we interpret as a matrix in the site indices 
i and j defined by 

Gr'  = [ ( E  - H ) - ' I i ,  

where we set E = 1 and take H to be the hopping Hamiltonian 

Hzj= ~i,{ l i )( j l+l j)(4} (9) 

in bra-ket notation, where K,, = 0 unless sites i and j are nearest neighbours. Normally, 
we would set K ,  = K for all nearest-neighbouring interactions, in which case Gf '  is 
the random-walk generating function defined by 

where y c r ; ! '  indicates that the sum is over walks y in the ensemble r!:' of N-step 
walks which begin at site i and end at site j .  

We introduce a perturbation which will allow us to count bond traversals. Suppose 
we modify one of the K (specifically Kkl )  by setting it equal to K ' .  Then we write the 
corresponding Green function as 

where n k l ( y )  is the number of times the bond connecting sites k and I is traversed in 
the walk y .  In one dimension or on a Cayley tree, in either case where there are no 
parallel paths, the end-to-end resistance of a walk between sites i and j is easily 
calculated in terms of the nkl 
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where the factor ( n k l ( y ) ) - ’  takes account of the fact that the conductance of a bond 
which is traversed q times is taken to be qg, ,  where go is a unit conductance which 
will be omitted henceforth. In the sum over bonds ( k l ) ,  we obviously only sum over 
the bonds which occur in the self-avoiding walk (SAW) connecting sites i and j (see 
figure 2) and this is indicated by the notation ( k l )  c ySAW. Bonds not in this self-avoiding 
walk have no influence on the end-to-end resistance of the walk y. 

We can generate (12) by a suitable integration over K’ in ( 1 1 ) .  If we define xiJ to 
be the resistive susceptibility associated with random walks which begin at site i and 
end at site j, then we have 

We can, however, include the perturbation in the hopping matrix element, ( K ‘ -  K )  
via an exact calculation (Koster and Slater 1954) of the t matrix for the perturbing 
bond ( k l ) .  That is, we take 

Pk” = ( K ’  - K ){ 1 k)( l /  + I/)(  kl} (14) 

G‘,“’(K, K’)  = G!,O’+ G~:)[t ‘kf)(K’)]mnG$’.  (16) 
mn 

Therefore we may write (13 )  in the form 

Several simplifying features are noteworthy. First of all, the t matrix is local to 
the bond ( k l ) ,  so that in (17)  the indices rn and n range only over the values k and 1. 
Also, the t matrix has the same form for all bonds ( k l ) .  Note that if we were to 
integrate the term in (17) involving G!;’ separately, we would encounter a divergence 
at K ’  = 0. However, GI:”( K,  K ’ )  vanishes for K’ = 0 because when the hopping matrix 
element associated with bond ( k l )  is zero then sites i and j are decoupled. Therefore 
there is no divergence in (17) when the terms in G‘O) and G(o’tG‘o’ are combined. 
This reasoning indicates that 

G;:”( K ,  0 )  = 0 = G r ’ +  G ~ ~ ) G ~ ~ ) t ~ ~ ’ ( O )  (18) 
mn 

and this relation is used to write G r ’  in terms of the t matrix evaluated at K’=O. 
Thus we have 

where 

A t ( K ’ )  = t ( K ’ )  - t (0) .  

In matrix notation, where the rows and columns correspond to the site labels k 
and 1, we write ( 1 5 )  as 
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where Gd = Glpk‘ is the on-site Green function and Go = G(kql’ is the nearest-neighbour 
off-diagonal Green function. After some algebra we find that 

t(k’)(K’) - t (k l ) (O)  1 
K’  

where 

CY,=[(~+KG+)(~+(K-K’)G+)]-’*[(~+KG-)(~+(K-K’)G-)]-’ (22) 

and 

G,GGo*Gd. 

The integration over the coupling constant is now easily done: 

In( 1 + KG+) 
G+( 1 + KG,) 

In( 1 + KG-) 
G-( 1 + KG-) ’ 

loK CY, d K ’ =  

Then (19) takes the very simple form 

The notation k +  1 means the site next to k but further in the direction of j .  Here the 
sum over k is over all points between i and j ,  including i but not j .  The restriction 
k # j  occurs because we have inserted the t matrix t ‘h ,k+’) .  As we shall see, the sum 
over k will be trivial. 

To evaluate (25) we need Gf’ for the homogeneous hopping model on the Cayley 
tree. For the Cayley tree note that G!:’ only depends on the number of steps n between 
sites i and j .  Following the method of Harris and Lubensky (1981, appendix A) we have 

Gr’= GrP’x;“i~ = G‘,P’(x-/g)“,l (26) 

~ , = [ 1 * ( 1 - 4 u K ’ ) ” ’ ~ / ( 2 K )  (27) 

where n, is the number of steps between sites i and j .  Here we have introduced 

where U = z - 1,  where z is the coordination number of the tree. Also GlP) is given by 

In this notation 
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Due to the form of (26) one sees that the summand in (25) is actually independent of 
k. The number of allowed values of k is simply nu. Using this fact and (26) we write 
(25) as 

x.. = n . . [ G ~ ~ ) ] 2 ( ~ ) n ' i [  (:+:+2) In( 1 + KG+) 
11 '1 2G+( 1 + KG+) 

In( 1 + KG-) 
2G-( 1 + KG-) 

Using (29) we simplify (30a) into the form 

To get the total susceptibility we sum over shells indexed by n,,. The number of sites 
in the shell nu is simply (a+ l)a"l~- ' ,  for nv 3 1. The final result is 

/y =c (a+ l)a""-lXu = (a+ 1)x- In( ") 
" i l  2Ka(  1 - x - ) ~  X+ - 1 

For a= 1 we have the special case of a one-dimensional chain 

1 1 + 2 K  
'=2(1 -2K)  

The critical exponents are associated with the singularities at  K = z - ' .  For this 
value of K, x- + 1 and x+ + a. In terms of the reduced fugacity 

we have for K + K ,  

Z 
x-=l--t  

2-2 

and as a result for (T> 1 we find that 

whereas for (T = 1 the result is 

/y-$(ln t i l t .  (346) 
The result (31) allows an  exact evaluation of the average resistance of walks of 

length N for a given N. If we expand x in powers of K,  then we have 

,y(K) =c [R]" ' ( zK)~ .  (35) 
N 

From (32) the result for one dimension is especially simple: 

l + ; + f +  . . . +1/(2k-1).  ( 3 6 ~ )  
We have verified this simple result by exact enumeration of random walks of length 
u p  to 15 steps on a linear lattice. The result does not simply arise by associating each 

[ ~ ] ( 2 k - l )  = [R](2k) = 
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term in the series of (36a) with a given configuration. Thus we have not seen how to 
make a simple calculation of this simple-looking result. For large N (36a) becomes 

[ ~ ] " ' - i l n  N .  (36b) 
For U >  1, (34a) implies that for large N 

u-1)2 U + l  
[RI"'-- [%In( z)] N 

which for large U becomes 

This last result is easily understood as being the simplest approximation which takes 
account of immediate reversals. In high dimension the walk will essentially be a 
self-avoiding one. The most important deviation from self-avoidance arises from 
covering a bond with two successive steps. The probability that this happens is l /a 
per step. However, such an event deletes two resistances and therefore gives the average 
resistance per step as 1 - ( 2 / ~ ) ,  in agreement with (37b). 

3. Conclusion 

We have given in (31) and (35) the exact solution for [R]"', the end-to-end resistance 
averaged over all N-step random walks on a Cayley tree in which a unit conductance 
is associated with each step of the walk. For coordination number two, i.e. a one- 
dimensional lattice, the exact result (36) yields 

[RI"' - $ In N. (38a) 

[RI"'- CON (38b) 

For a Cayley tree with coordination number greater than two we have 

in agreement with mean-field arguments. Here CO is a constant given in (37). 
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